26 research outputs found

    On time dependent MHD nanofluid dynamics due to enlarging sheet with bioconvection and two thermal boundary conditions

    Get PDF
    The current study pertains to heat and mass transportation of magnetic fluid flow having dilute diffusion of nanoparticles and motile microorganisms over a permeable stretched sheet to examine the influence of thermal radiation and activation energy. Similarity functions are utilized to convert the highly mixed non-linear partial differential equations into higherorder non-linear ordinary differential equations. Five coupled equations are derived to be resolved numerically by employing a computing function Bvp4c, built-in Matlab. Two sets of thermal boundaries prescribed surface temperature (PSF) and prescribed heat flux (PHF) are considered. Basic physical quantities, temperature distribution, concentration, velocity field, and motile micro-organism profiles are observed as influenced by emerging parameters. The microorganisms distribution undergoes decreasing behavior against growing values of bio-convection Lewis number and Peclet number. These results are highly useful in the application of heat-transmitting devices and microbial fuel cells. It is seen that decreasing trend is observed in velocity profile when parameters Nr and Nc are uplifted. Also, the motility of the nanofluid decreases when the Lb parameter is raised. On the other hand, an increase in Peclet number Pe showed a rising trend in motility profile. Additionally, the implications of Brownian motion, Rayleigh number, Bioconvection Lewis number thermophoresis parameter, Peclet number, and buoyancy ratio parameter are discussed. Moreover, the obtained outcomes are validated as compared to the existing ones as limiting cases. Representative findings for microorganism concentration, skin friction coefficient, temperature gradient, local Sherwood number and density number of motile microorganisms, velocity field, temperature, the volumetric concentration of nanoparticles, are discussed in tabulated and graphical form

    On Time-Dependent Rheology of Sutterby Nanofluid Transport across a Rotating Cone with Anisotropic Slip Constraints and Bioconvection

    Get PDF
    The purpose and novelty of our study include the scrutinization of the unsteady flow and heat characteristics of the unsteady Sutterby nano-fluid flow across an elongated cone using slip boundary conditions. The bioconvection of gyrotactic micro-organisms, Cattaneo-Christov, and thermal radiative fluxes with magnetic fields are significant physical aspects of the study. Anisotropic constraints on the cone surface are taken into account. The leading formulation is transmuted into ordinary differential formate via similarity functions. Five coupled equations with nonlinear terms are resolved numerically through the utilization of a MATLAB code for the Runge-Kutta procedure. The parameters of buoyancy ratio, the porosity of medium, and bioconvection Rayleigh number decrease x-direction velocity. The slip parameter retard y-direction velocity. The temperature for Sutterby fluids is at a hotter level, but its velocity is vividly slower compared to those of nanofluids. The temperature profile improves directly with thermophoresis, v-velocity slip, and random motion of nanoentities. 2022 by the authors.This research was supported by Taif University, Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia. Open Access funding provided by the Qatar National Library.Scopu

    Numerical simulation for thermal enhancement of Hâ‚‚O + ethyl glycol base hybrid nanofluid comprising GO + (Ag; aa7072; MoSâ‚‚) nano entities due to a stretched sheet

    No full text
    The evaluation of compact heat density gadgets requires effective measures for heat transportation. Enhancement in thermal transportation of hybrid nanofluids comprising of water plus ethyl glycol with the dispersion of three different nano-entities is considered. The fluids are transported through a porous medium over a permeable elongating sheet. Water and ethyl glycol are (50%-50%). The three cases for hybrid species consist of (a) Graphene oxide (Go) + AA7072, (b) Go + Molybdenum sulfide, (c) Go + silver. The volume fraction of nano-entities is greater than 0.3%. It is presumed that the fluid flow is non-Newtonian. Two on-Newtonian fluids models namely Maxwell fluid and Casson fluid are taken into consideration to present comparative behavior in the existence of the nano-particle mixture. The leading equations are altered into ordinary differential form. A robust numerical procedure embraced with Runge-Kutta methodology and shooting strategy is employed to attain results for the dependent physical quantities. It is noticed that the velocity is diminished against the magnetic field parameter and porosity parameter. The temperature for case (a) Go + AA7072 is the highest and it is lowest for case (c) Go + silver. The temperature and velocity functions of both the fluids (Casson and Maxwell fluids) are incremented with larger inputs of hybrid nano-species. The results can find applications for the better performance of electronic equipment, and heat exchangers.Published versionThis research work was funded by institutional fund projects under no. (IFP-A- 2022-2-5-24). Therefore, the authors gratefully acknowledge technical and financial support from the ministry of education and the University of Hafr Al Batin, Saudi Arabia

    Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux

    Get PDF
    The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters

    Finite Element Analysis of Thermo-Diffusion and Multi-Slip Effects on MHD Unsteady Flow of Casson Nano-Fluid over a Shrinking/Stretching Sheet with Radiation and Heat Source

    No full text
    In this article, we probe the multiple-slip effects on magnetohydrodynamic unsteady Casson nano-fluid flow over a penetrable stretching sheet, sheet entrenched in a porous medium with thermo-diffusion effect, and injection/suction in the presence of heat source. The flow is engendered due to the unsteady time-dependent stretching sheet retained inside the porous medium. The leading non-linear partial differential equations are transmuted in the system of coupled nonlinear ordinary differential equations by using appropriate transformations, then the transformed equations are solved by using the variational finite element method numerically. The velocity, temperature, solutal concentration, and nano-particles concentration, as well as the rate of heat transfer, the skin friction coefficient, and Sherwood number for solutal concentration, are presented for several physical parameters. Next, the effects of these various physical parameters are conferred with graphs and tables. The exact values of flow velocity, skin friction, and Nusselt number are compared with a numerical solution acquired with the finite element method (FEM), and also with numerical results accessible in literature. In the end, we rationalize the convergence of the finite element numerical solution, and the calculations are carried out by reducing the mesh size

    Insight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo–Christov heat transfer, Coriolis force, and Arrhenius activation energy

    No full text
    This article addressees the dynamics of fluid conveying tinny particles and Coriolis force effects on transient rotational flow toward a continuously stretching sheet. Tiny particles are considered due to their unusual characteristics like extraordinary thermal conductivity, which are significant in advanced nanotechnology, heat exchangers, material sciences, and electronics. The main objective of this comprehensive study is the enhancement of heat transportation. The governing equations in three dimensional form are transmuted in to dimensionless two-dimensional form with implementation of suitable scaling transformations. The variational finite element procedure is harnessed and coded in Matlab script to obtain numerical solution of the coupled non-linear partial differential problem. It is observed that higher inputs of the parameters for magnetic force and rotational fluid cause to slow the primary as well as secondary velocities, but the thermophoresis and Brownian motion raise the temperature. However, thermal relaxation parameter reduces the nanofluid temperature. The velocities for viscosity constant case are faster than that for the variable viscosity, but temperature and species concentration depict opposite behavior

    Finite Element Simulation of Multi-Slip Effects on Unsteady MHD Bioconvective Micropolar Nanofluid Flow Over a Sheet with Solutal and Thermal Convective Boundary Conditions

    No full text
    In this article, the intention is to explore the flow of a magneto-hydrodynamic (MHD) bioconvective micro-polar Nanofluid restraining microorganism. The numerical solution of 2-D laminar bioconvective boundary layer flow of micro-polar nanofluids are presented. The phenomena of multi-slip, convective thermal and Solutal boundary conditions have been integrated. A system of non-linear partial differential equations are transformed into the system of coupled nonlinear ordinary differential equations by applying appropriate transformations, the transformed equations are then solved by applying the variational finite element method (FEM). The fascinating features of assorted velocity parameter, microrotation, temperature, microorganism compactness, solutal and nanoparticles concentration have been inspected. The rate of heat transfer, the skin friction coefficient, couple stress and Sherwood number for microorganisms have also been discussed graphically and numerically. The investigations illustrated that increase in material parameters causes a reduction in microorganism compactness, concentration and temperature. As a result of enhancement in the unsteadiness parameter, the fluid velocity, concentration of microorganisms and the temperature are observed to be declines. Energy and microorganism compactness profile affected by the improvement in the buoyancy ratio parameter. As the improvement in results of buoyancy ratio parameter effects on improvement in the energy and the microorganism compactness profile while the velocity profile is condensed. In the end, rationalized convergence of the finite element solution has been inspected; the computations are found out via depreciating the mesh size

    On solution existence of MHD Casson nanofluid transportation across an extending cylinder through porous media and evaluation of priori bounds

    No full text
    It is a theoretical exportation for mass transpiration and thermal transportation of Casson nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced by magnetic field of uniform strength. Appropriate similarity functions are availed to yield the transmuted system of leading differential equations. Existence for the solution of momentum equation is proved for various values of Casson parameter β, magnetic parameter M, porosity parameter Kₚ and Reynolds number Re in two situations of mass transpiration (suction/injuction). The core interest for this study aroused to address some analytical aspects. Therefore, existence of solution is proved and uniqueness of this results is discussed with evaluation of bounds for existence of solution. Results for skin friction factor are established to attain accuracy for large injection values. Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and shooting technique. The flow speed retards against M, β and Kₚ for both situations of mass injection and suction. The thermal boundary layer improves with Brownian and thermopherotic diffusions.Published versio

    Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy

    No full text
    The evolution of compact density heat gadgets demands effective thermal transportation. The notion of nanofluid plays active role for this requirements. A comparative account for Maxwell nanofluids and Williamson nanofluid is analyzed. The bioconvection of self motive microorganisms, non Fourier heat flux and activation energy are new aspects of this study. This article elaborates the effects of viscous dissipation, Cattaneo-Christov diffusion for Maxwell and Williamson nanofluid transportation that occurs due to porous stretching sheet. The higher order non-linear partial differential equations are solved by using similarity transformations and a new set of ordinary differential equations is formed. For numerical purpose, Runge-Kutta method with shooting technique is applied. Matlab plateform is used for computational procedure. The graphs for various profiles .i.e. velocity, temperature, concentration and concentration of motile micro-organisms are revealed for specific non-dimensional parameters. It is observed that enhancing the magnetic parameter M, the velocity of fluid decreases but opposite behavior happens for temperature, concentration and motile density profile. Also the motile density profile decrease down for Pe and Lb. The skin friction coefficient is enhanced for both the Williamson and Maxwell fluid.Published versionThe authors would like to acknowledge and express their gratitude to the United Arab Emirates University, Al Ain, UAE for providing financial support with Grant No. 12S086

    Significance of thermal radiation and bioconvection for Williamson nanofluid transportation owing to cone rotation

    No full text
    Abstract Numerical investigation for enhancement in thermal distribution of unsteady dynamics of Williamson nanofluids and ordinary nanofluids flow across extending surface of a rotating cone is represented in this communication. Bio-convection of gyrotactic micro-organisms and thermal radiative fluxes with magnetic fields are significant physical aspects of the study. The velocity slip conditions are considered along x and y directions. The leading formulation is transmuted into ordinary differential form via similarity functions. Five coupled equations with non-linear terms are resolved numerically through the utilization of Matlab code for the Runge–Kutta procedure. The parameters of buoyancy ratio and bio-convection Rayleigh number decrease the x-direction velocity. The slip parameter being proportional to viscosity reduces the speed of flow and hence rise in temperature. Also, the temperature rises with the rising values of magnetic field strength, radiative heat transportation, Brownian motion and thermophorsis
    corecore